Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Azizolla Beheshti, ${ }^{\text {a }}$ Neil R.

Brooks, ${ }^{\text {b }}$ William Clegg ${ }^{\text {b }}$ * and

 Rahman Khorrmdin ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Shahid Chamran University, Ahvaz, Iran, and
${ }^{\mathbf{b}}$ School of Natural Sciences (Chemistry),
University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England

Correspondence e-mail: w.clegg@ncl.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.064 \AA$
R factor $=0.092$
$w R$ factor $=0.233$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraethylammonium [1-methylimidazole-2(3H)-thione]copper(I)-di- μ-sulfido-dioxotungstate(VI)

In the title complex, tetrethylammonium [1-methyl-imidazole-2 $(3 H)$-thione- $2 \kappa \mathrm{~S}$]dioxo- $1 \kappa^{2} \mathrm{O}$-di- μ-sulfido-1:2 κ^{4} $S: S$-copper(I)tungstate(VI), $\quad\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{WCuO}_{2} \mathrm{~S}_{2}(\mathrm{Hmimt})\right]$, where Hmimt is 1-methylimidazole-2(3H)-thione $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)$, the W and Cu atoms have tetrahedral and trigonal planar coordination, respectively. Two sulfide ligands bridge the two metal centres; tungsten is additionally coordinated by two terminal oxo ligands and copper by the exocyclic S atom of Hmimt. The bridged $\mathrm{W} \cdots \mathrm{Cu}$ distance is $2.670(3) \AA$. Anions are linked into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between Hmimt and oxo ligands.

Comment

Monovalent coinage metals are typical soft acids and their chemistry is largely based upon coordination by soft bases, such as sulfur donor ligands. Among the sulfur-containing ligands, heterocyclic thiones are of particular interest. Complexes of these ligands with transition metals are of interest in bioinorganic chemistry, because of the search for simple model compounds for metal proteins (Raper, 1996; Akrivos, 2001). In view of this, Cu^{I} (Dai et al., 2004; Aslanidis et al., 2004; Cox et al., 1999), Ag^{I} (Isab et al., 2002; Casas et al., 1996) and Au^{I} (Ahmad, 2004; Isab \& Hussain, 1985, 1986) complexes with thiones have been widely studied in recent years. We report here the synthesis and characterization of a copper(I) complex with Hmimt [1-methylimidazole-2(3H)thione] and $\left[\mathrm{WO}_{2} \mathrm{~S}_{2}\right]^{2-}$ as a sulfur-donor ligands. The anion of the title compound, (I), is only the second example of copper coordination by the $\left[\mathrm{WO}_{2} \mathrm{~S}_{2}\right]^{2-}$ metalloligand to be verified by X-ray crystallography (Beheshti et al., 2001) and only the third example for any metal, the other being a palladium complex (Long et al., 1999).

A view of the structure is shown in Fig. 1 and selected geometric parameters are given in Table 1. The asymmetric unit consists of an $\left(\mathrm{Et}_{4} \mathrm{~N}\right)^{+}$cation and an

Received 17 November 2004 Accepted 18 November 2004 Online 27 November 2004

Figure 1
The molecular structure, with atom labels and 50% probability ellipsoids for non-H atoms.

Figure 2
The chain of anions generated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (shown as dashed lines).
$\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{Cu}(\mathrm{Hmimt})\right]^{-}$anion. The geometry of the cation is unexceptional. The Cu atom, with trigonal-planar geometry, is coordinated by the exocyclic S atom of an Hmimt ligand and by two S atoms of the dithiotungstate group, similar to the arrangement in $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{Me} 2 \mathrm{CO}($ Beheshti et al., 2001), where triphenylphosphine replaces the Hmimt ligand. In the $\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{Cu}(\mathrm{Hmimt})\right]^{-}$anion, the three $\mathrm{Cu}-\mathrm{S}$ bonds are slightly shorter than those in other compounds in which copper(I) is coordinated by three S atoms in a trigonal array involving bridging thiolates, including the clusters $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Cu}_{5}(\mathrm{SBu})_{6}\right] \quad(2.260-2.290 \AA$; Bowmaker et al., 1984) and $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Cu}_{4}(\mathrm{SPh})_{6}\right] \cdot \mathrm{EtOH}(2.263-2.346 \AA$ A ; Dance et al., 1983). The $\mathrm{Cu}-\mathrm{S} 1$ bond is significantly shorter than $\mathrm{Cu}-\mathrm{S}$ bonds $(2.202-2.401 \AA)$ in complexes in which copper (I) is coordinated in a trigonal array by a thiotungstate as a bidentate ligand. This observation can be rationalized as a delocalization of charge from Cu^{I} to W^{VI} when a π-donor ligand such as Hmimt and a π-acceptor ligand such as $\left[\mathrm{WO}_{2} \mathrm{~S}_{2}\right]^{2-}$ are bonded to a Cu^{I} atom. By the same reasoning, the $\mathrm{Cu}-\mathrm{S} 3$ bond is shorter than that observed in $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{Cu}(\mathrm{PPh} 3)\right] \cdot \mathrm{Me}_{2} \mathrm{CO}$ (average $2.239 \AA$), in which copper(I) is coordinated by PPh_{3} as a π-acceptor ligand (Beheshti et al., 2001).

The $\mathrm{Cu} 1-\mathrm{S} 1-\mathrm{C} 1$ angle is essentially the same as those obtained for the terminal Hmimt ligand in $\left[\mathrm{Cu}(\mathrm{Hmim})_{3}\right]\left(\mathrm{NO}_{3}\right)$ (average 107.3; Atkinson et al., 1985). The bending at the thione S atom introduces an asymmetry in the anion which is also apparent in the dimensions of the $\mathrm{WS}_{2} \mathrm{CuS}$ core. In particular, the $\mathrm{S} 3-\mathrm{Cu}-\mathrm{S} 1$ angle on the same side of the anion as the Hmimt ligand is significantly greater than the other two bond angles at the Cu atom. This deviation from ideal
trigonal-planar angles of 120° is attributed to steric effects and the bonding requirements of the Hmimt ligand.

The C2-C3 bond length in the Hmimt ligand is clearly consistent with a localized double bond and the thione $\mathrm{C}=\mathrm{S}$ bond is weakened and lengthened on coordination relative to that of the uncoordinated Hmimt molecule (1.676 \AA; Raper et al., 1983), due to a reduction in the π-bond character of the thione linkage accompanying metal-thione coordination. The ${ }^{1} \mathrm{H}$ NMR signals of Hmimt are shifted downfield from those for the uncoordinated molecule, indicating that the ligand remains attached to Cu in solution in dimethyl sulfoxide. The ${ }^{13} \mathrm{C}$ NMR signals, compared with their positions in the spectrum of the uncomplexed ligand, support the coordination through S , leading to a weakening of the $\mathrm{C}=\mathrm{S}$ bond and some partial double bond character for $\mathrm{C}-\mathrm{N}$ (Popovic et al., 2000; Bierbach et al., 1998).

Tungsten has only slightly distorted tetrahedral coordination. The double sulfide bridges generate a short $\mathrm{W} \cdots \mathrm{Cu}$ distance of 2.670 (3) \AA, which is not interpreted as a significant direct metal-metal bond.

The NH group of Hmimt forms a hydrogen bond with an oxo ligand attached to tungsten in a neighbouring anion, with an $\mathrm{N} \cdots \mathrm{O}$ distance of 2.70 (3) \AA and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of 177°. Repetition of this hydrogen bond by a screw axis generates a chain of anions along the b axis (Fig. 2). The tautomeric form of Hmimt is also confirmed by characteristic bands in the $\mathrm{FT}-\mathrm{IR}$ spectrum, with an $\mathrm{N}-\mathrm{H}$ but no $\mathrm{S}-\mathrm{H}$ stretching vibration, and by the presence of a ${ }^{1} \mathrm{H}$ NMR signal for H bonded to N . There are no other significant interactions among the components apart from normal coulombic and van der Waals forces; the packing is shown in Fig. 3.

The FT-IR spectrum of the complex exhibits strong features at 902 and $837 \mathrm{~cm}^{-1}$ characteristic of the symmetric and asymmetric stretching vibrations of the $\mathrm{W}=\mathrm{O}$ bonds in the coordinated $\left[\mathrm{WO}_{2} \mathrm{~S}_{2}\right]^{2-}$ anion, respectively. The band at $437 \mathrm{~cm}^{-1}$ is assigned to the bridging $\mathrm{W}-\mathrm{S}$ bonds.

Experimental

$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{WO}_{2} \mathrm{~S}_{2}\right](0.316 \mathrm{~g}, 1.0 \mathrm{mmol})$ was dissolved in dimethylformamide $(5 \mathrm{ml})$ and solid $\left(\mathrm{Et}_{4} \mathrm{~N}\right) \mathrm{Br}(0.441 \mathrm{~g}, 2.1 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for $5 \mathrm{~min} . \mathrm{CuCl}(0.1 \mathrm{~g}$, 1.01 mmol) was added and the mixture was stirred for another 5 min and then filtered. 2-Propanol $(10 \mathrm{ml})$ and diethyl ether $(20 \mathrm{ml})$ were added to the filtrate. After stirring for 5 min , the precipitate was collected by filtration. It was washed with 2-propanol (3 ml) and diethyl ether (5 ml) and dried in vacuo to give a hygroscopic orange powder of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{CuCl}\right]$ (yield $\left.59 \%\right) .\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{CuCl}\right]$ $(0.128 \mathrm{~g}, 0.2 \mathrm{mmol})$ was dissolved in acetonitrile (5 ml). Hmimt $(0.049 \mathrm{~g}, 0.43 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 30 min and then filtered. Dry diethyl ether was added to the filtrate until a cloudiness persisted throughout the solution. Upon leaving the solution to stand in a sealed flask at 278 K overnight, pale-orange crystals of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{O}_{2} \mathrm{WS}_{2} \mathrm{Cu}(\mathrm{Hmimt})\right.$ were obtained. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 12.62(s, \mathrm{NH}), 7.23(s, \mathrm{CH}), 7.06(s$, $\mathrm{CH}), 3.53\left(s, \mathrm{NCH}_{3}\right)$, together with characteristic signals for the cation; ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 155.64$ (C1), 121.87 (C3), 116.34 (C2), $34.96\left(\mathrm{NCH}_{3}\right)$, and cation signals, using the numbering scheme of Fig. 1.

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{WCuO}_{2} \mathrm{~S}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$
$M_{r}=587.93$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.1985$ (5) \AA
$b=16.3720(14) \AA$
$c=17.244$ (2) A
$V=2032.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.922 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.190, T_{\text {max }}=0.570$
17533 measured reflections
3557 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.092$
$w R\left(F^{2}\right)=0.233$
$S=1.24$
3557 reflections
201 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+149.3501 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 17595 reflections
$\theta=2.5-26.0^{\circ}$
$\mu=7.02 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, pale orange
$0.34 \times 0.16 \times 0.08 \mathrm{~mm}$

3369 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 6$
$k=-19 \rightarrow 19$
$l=-20 \rightarrow 20$
$(\Delta / \sigma)_{\text {max }}=0.043$
$\Delta \rho_{\text {max }}=3.68 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-3.79 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0029 (6)
Absolute structure: Flack (1983),
1506 Friedel pairs
Flack parameter $=0.35$ (5)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

W-S2	$2.288(7)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.75(3)$
W-S3	$2.228(10)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.37(3)$
$\mathrm{W}-\mathrm{O} 1$	$1.77(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.36(4)$
$\mathrm{W}-\mathrm{O} 2$	$1.75(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.40(3)$
$\mathrm{Cu}-\mathrm{S} 1$	$2.189(7)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.34(3)$
$\mathrm{Cu}-\mathrm{S} 2$	$2.340(9)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.37(4)$
$\mathrm{Cu}-\mathrm{S} 3$	$2.168(9)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.33(4)$
$\mathrm{S} 2-\mathrm{W}-\mathrm{S} 3$	$107.0(3)$	$\mathrm{W}-\mathrm{S} 3-\mathrm{Cu}$	$74.8(3)$
$\mathrm{S} 2-\mathrm{W}-\mathrm{O} 1$	$107.8(12)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$106(2)$
$\mathrm{S} 2-\mathrm{W}-\mathrm{O} 2$	$106.3(8)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$121(2)$
$\mathrm{S} 3-\mathrm{W}-\mathrm{O} 1$	$114.2(13)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$132(2)$
$\mathrm{S} 3-\mathrm{W}-\mathrm{O} 2$	$112.2(9)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$109(2)$
$\mathrm{O} 1-\mathrm{W}-\mathrm{O} 2$	$108.9(12)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$130(2)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 2$	$121.7(3)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$122(2)$
$\mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 3$	$130.9(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$108(2)$
$\mathrm{S} 2-\mathrm{Cu}-\mathrm{S} 3$	$107.2(4)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$110(3)$
$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1$	$106.5(10)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$106(3)$
$\mathrm{W}-\mathrm{S} 2-\mathrm{Cu}$	$70.4(2)$		
$\mathrm{S} 2-\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1$	$157.1(9)$	$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$65(3)$
$\mathrm{S} 3-\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1$	$-18.0(11)$	$\mathrm{Cu}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$-121(2)$

H atoms were positioned geometrically and refined with a riding model, and with $U_{\text {iso }}$ values constrained to be 1.2 (1.5 for methyl groups) times $U_{\text {eq }}$ of the carrier atom. Large and highly anisotropic displacement ellipsoids for the atoms of the cation indicate probable disorder, but no simple disorder model could be resolved; refinement was assisted by restraints on geometry and displacement parameters, and the overall precision of the structure is relatively low as a result. The cation and anion are both achiral, but the compound crystallizes in a non-centrosymmetric space group; the refined Flack (1983) parameter of 0.35 (5) indicates partial inversion twinning of the structure. The maximum and minimum final difference electron density features both lie almost $1 \AA$ from the W atom.

Figure 3
The crystal packing, viewed down the a axis.

Data collection: COLLECT (Nonius, 1998); cell refinement: EvalCCD (Duisenberg et al., 2003); data reduction: EvalCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $S H E L X T L$; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We thank the EPSRC (UK) and Shahid Chamran University for financial support.

References

Ahmad, S. (2004). Coord. Chem. Rev. 248, 231-243.
Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.
Aslanidis, P., Cox, P. J., Divanidis, S. \& Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 1063-1076.
Atkinson, E. R., Gardiner, D. J., Jackson, A. R. W. \& Raper, E. S. (1985). Inorg. Chim. Acta, 98, 35-41.
Beheshti, A., Clegg, W. \& Fallah, H. (2001). Inorg. Chim. Acta, 322, 1-6.
Bierbach, U., Hambly, T. W. \& Farrell, N. (1998). Inorg. Chem. 37, 708-716.
Bowmaker, G. A., Clark, G. R., Seadon, J. K. \& Dance, I. G. (1984). Polyhedron, 3, 535-544.
Casas, J. S., Martinez, E. G., Sanchez, A., Gonzalez, A. S., Sordo, J., Casellato, U. \& Graziani, R. (1996). Inorg. Chim. Acta, 241, 117-123.

Cox, P. J., Aslanidis, P., Karagiannidis, P. \& Hadjikakou, S. K. (1999). Polyhedron, 18, 1501-1506.
Dai, J., Yang, W., Ren, Z.-G., Zhu, Q.-Y. \& Jia, D.-X. (2004). Polyhedron, 23, 1447-1451.
Dance, I. G., Bowmaker, G. A., Clark, G. R. \& Seadon, J. K. (1983). Polyhedron, 2, 1031-1043.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Isab, A. A., Ahmad, S. \& Arab, M. (2002). Polyhedron, 21, 1267-1271.
Isab, A. A. \& Hussain, M. S. (1985). Polyhedron, 4, 1683-1688.
Isab, A. A. \& Hussain, M. S. (1986). J. Coord. Chem. 15, 125-130.
Long, D.-L., Chen, J.-T. \& Huang, J. S. (1999). Inorg. Chim. Acta, 285, 241-248. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Popovic, Z., Pavlovic, G., Matkovic Calogovic, D., Soldin, Z., Rajic, M., Vikic Topic, D. \& Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.

metal-organic papers

Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.
Raper, E. S., Oughtred, R. E. \& Nowell, I. W. (1983). Inorg. Chim. Acta, 77, L89-L93.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.

